ZENMUSE L1

用户手册 [V1.2]

2021.09

Q 快速搜索关键词

PDF 电子文档可以使用查找功能搜索关键词。例如在 Adobe Reader 中,Windows 用户使用快捷键 Ctrl+F,Mac 用户使用 Command+F 即可搜索关键词。

🗄 点击目录转跳

用户可以通过目录了解文档的内容结构,点击标题即可跳转到相应页面。

☐ 打印文档

本文档支持高质量打印。

阅读提示

符号说明

▲ 重要注意事项 ジ 操作、使用提示 □ 词汇解释、参考信息

产品注意事项

- 1. L1 负载为精密测量仪器,请轻拿轻放,切勿摔落。
- 在空气能见度较差的情况下(例如雾霾、雨天),激光雷达的有效检测范围将会减小,且可 能在空中出现点云噪点,如对最终点云数据质量有较高要求,使用时请尽量避开以上情况。
- 切勿用手触摸激光雷达窗口。若激光雷达窗口上有污点或灰尘等杂质,请使用压缩空气除尘 罐,湿润的镜头清洁布进行清洁(具体清洁方式,请查看存储、运输和保养章节),以免污 点灰尘等影响产品性能。
- 请勿用手直接接触或用硬物刮擦相机镜头的表面镀层,否则会导致相机成像模糊,影响图像 质量。清洁测绘相机和辅助定位相机的镜头时,请务必使用柔软干燥的清洁布擦拭镜头表面, 切勿使用含酒精等易挥发成分的液体或碱性清洁剂进行清洁。
- 5. 请将相机存放于常温、干燥通风处,避免环境湿度过大导致镜头起雾。若镜头起雾,通常情况下开机一段时间后水汽即可消散。推荐存储环境的相对湿度小于 40%,温度为 20 ± 5℃。
- 6. 请勿将相机放在阳光直射、通风不良的地点,或暖气、加热器等热源附近。
- 清勿频繁启动或关闭云台相机,关机后请间隔 30s 以上时间再重启设备,否则会影响相机 机芯寿命。
- 8. 在受控实验室条件下,L1负载可达到IEC60529标准下IP54防护等级。防护等级非永久有效, 可能会因长期使用导致磨损而下降。
- 9. 请确保云台接口及云台表面干燥无水,再对云台进行安装。
- 10. 使用前,请务必确认云台已稳固安装于飞行器上,microSD 卡保护盖清洁无异物且已盖好。
- 11. 打开 microSD 卡保护盖前,需将机身表面擦拭干净。
- 12. 使用过程中,请勿带电插拔 microSD 卡。

目录

阅读提示	3
符号说明	3
产品注意事项	3
产品概述	5
简介	5
部件说明	5
安装	5
支持飞行器类型	5
安装至飞行器	5
遥控器控制	7
DJI Pilot App 控制	8
基础功能画面	8
点云录制画面	9
点云预览画面	10
外业数据采集	11
使用准备	11
相机参数设置	11
建图航拍	11
航带飞行	12
仿地飞行	13
手动飞行	14
点云数据存储说明	15
基站卫星数据获取	15
内业数据处理	16
下载 DJI Terra	16
建图步骤	16
激光雷达点云说明	17
非重复扫描	17
重复扫描	18
设备维护保养	19
日志导出	19
固件升级	19
用户标定	20
存储、运输和保养	21
规格参数	22

产品概述

简介

ZENMUSE[™] L1 是一款一体化的行业激光负载,集成了 LIVOX[™] 激光雷达、高精度惯导以及测 绘相机,可快速生成高精度点云数据。配备三轴云台,可安装至 DJI 指定飞行平台,支持 DJI Pilot App。配合大彊智图(DJI TERRA[™])软件,形成一体化解决方案,能够全天候、高效实时 完成现场三维重建以及复杂场景的高精度三维重建。

部件说明

- 1. 云台接口
- 2. 平移轴电机
- 3. 激光雷达
- 4. 测绘相机
- 5. 辅助定位相机
- 6. microSD 卡槽
- 7. 俯仰轴电机
- 8. 横滚轴电机

安装

支持飞行器类型

MATRICE[™] 300 RTK

安装至飞行器

1. 移除云台接口保护盖和镜头保护盖。

ZENMUSE L1 用户手册

- 2. 按住飞行器的云台相机解锁按键,移除飞行器云台接口保护盖。
- 3. 对齐云台相机上的白点与飞行器接口的红点,并嵌入安装位置。
- 4. 旋转云台相机接口至锁定位置(红点对齐),以固定云台。

- ▲ •如无法安装云台,请检查插头是否被意外扭转,若由于意外扭转导致不平齐,请手动拨 平后再装入云台。
 - •务必关闭飞行器电源后,再移除云台相机。
 - •如需移除云台相机,请先按住飞行器的云台相机解锁按键,再旋转移除云台相机。
 - 使用或存储过程中,请盖好 microSD 卡保护盖,以免水汽或灰尘进入。使用过程中, 未盖好 microSD 卡保护盖可能导致云台电机过载。
 - •通电过程中请勿直接触碰相机外壳,避免烫伤。
 - •飞行器存储与运输过程中,需要将云台相机从飞行器上取下,否则将导致减震球使用 寿命降低甚至损坏。

遥控器控制

以 Matrice 300 RTK 遥控器为例, 遥控器左、右拨轮分别控制云台的俯仰和平移角度; 通过拍照、 录影按键控制相机拍照和录影; 五维按键可调节 EV 值; 自定义按键 C1 可使云台回中, 而自定 义按键 C2 可切换主辅画面。

1. 左拨轮

用于控制云台的俯仰角度。

- **录影按键** 短按一次开始录影,再次短按停止录影。
- 3. 拍照按键

短按一次启动拍照。录影过程中,短按该 按键也可以实现拍照。通过 DJI Pilot App 可选择单张或者定时拍摄模式。

4. 右拨轮

用于控制云台的平移角度。

5. 五维按键

默认的功能定义如下,可通过 DJI Pilot App 自行调整功能定义。

左:减小 EV 值

- 右: 增大 EV 值
- 6. 自定义功能按键 C2

默认用于切换主辅画面。可通过 DJI Pilot App 自行调整功能定义。

7. 自定义功能按键 C1

默认用于云台回中。可通过 DJI Pilot App 自行调整功能定义。

DJI Pilot App 控制

DJI Pilot App 中,除控制拍照、录影与回放外,可通过航线飞行和手动飞行录制点云数据。

基础功能画面

在相机页面,可预览 L1 负载的拍摄画面,并进行相机参数设置。

软件界面可能会更新,请以最新版本为准。

1. 实时画面

实时显示当前相机画面。

2. 相机类型

显示当前相机选中的画面类型,为相机、点云画面或分屏显示画面。

3. 相机参数

显示相机当前的拍照/录影参数。

4. 对焦模式

点击可调节变焦相机的对焦模式,支持 MF(手动对焦), AFC(自动连续对焦), AFS(自 动单点对焦)。

5. 自动曝光锁定

点击按键可锁定当前曝光值。

6. 相机设置菜单

点击进入拍照和录影设置菜单。点击 O 设置拍照模式、照片格式等,点击 ■ 设置视频尺寸、格式等,点击 Q 进行点云设置,点击 / 设置视频字幕、网格线、智能 LED 灯等。

- 拍照/录影/点云录制切换按键 点击可切换拍照、录影或点云录制。
- 拍照/录影/点云录制按键 点击可触发相机拍照、开始/停止录影、开始/停止点云录制。按下遥控器上的拍照/录影 按键亦可进行拍照/录影。
- 9. 回放

点击可查看已拍摄的照片及视频。

10. 拍摄参数设置

点击可设置相机的 ISO、快门、曝光补偿等参数。

- 相机 / 点云切换按键
 点击可将主画面切换为按键对应的相机画面。
- 12. 单屏 / 双屏切换按键

点击可将主画面切换为单屏或双屏显示。

13. 惯导标定按键

手动飞行时,可触发飞行器进行惯导标定,以校准激光雷达的惯性导航,提高模型精度。标 定标飞行过程中,点击 STOP 可停止。建议在点云录制开始前和录制结束时分别进行一次惯 导标定,且飞行时确保附近 30 m 范围内空旷,保证飞行安全。

14. 调色板

可以选择不同的颜色呈现,包括反射率、高度、距离以及真彩等4个选项。

15. 模型预览按键

详见点云预览画面。

16. 暂停按键

点击可暂停点云录制。再次点击可重新开始录制。

点云预览画面

点击模型预览按键,可预览当前点云模型。

17. 单指拖拽模型,双指缩放或旋转模型。

- 18. 点击 💿, 模型将回到飞行器的位置, 查看当前飞行器下方的模型。
- 19. 点击 🛒, 模型缩放至可以查看整个模型, 并且整个模型居中。
- 20. 点击 T/N/E/S/W 可选择不同视角观察点云模型: T 为俯视视角、N 为北向视角、E 为东向视角、 S 为南向视角、W 为西向视角。

外业数据采集

用户可通过 DJI Pilot App 创建飞行任务录制点云数据,再使用 DJI Terra 进行点云数据处理。

使用准备

- 1. 确保 L1 负载正确安装于飞行器,依次开启飞行器和遥控器电源,并确保两者已对频。
- 进入 DJI Pilot App 手动飞行界面 > ••• > RTK,选择对应 RTK 服务类型,确保 RTK 的定位 和定向状态均为 FIX。使用场景网络信号或遥控器图传信号较差时,请阅读基站卫星数据获 取一节的说明后再进行后处理。
- 3. 建议 L1 负载启动后先预热 3-5 分钟, App 界面和语音提示负载惯导预热已完成,再开始数 据采集。

相机参数设置

- 1. 进入 DJI Pilot App 手动飞行界面 > ______,选择相机界面。
- 2. 点击 三,根据光线条件调整相机参数,确保照片曝光正常。

建图航拍

进入 DJI Pilot App 航线飞行界面 > "创建航线",选择 🔁 创建建图航拍任务。

1. 调整地图上所需扫描的区块。

- 编辑 LiDAR Mapping (点云测绘) 或 Photogrammetry (摄影测量)任务的参数:
 A. 执行点云测绘任务时,
 - a. 选择相机为"Zenmuse L1",然后点击"LiDAR Mapping"。
 - b. 完成页面各参数设置、高级设置以及负载设置。推荐激光旁向重叠率为50%以上, 扫描模式为重复扫描,飞行高度为50-100m,飞行速度为8-12m/s,开启"惯导标定"。

- B. 执行摄影测量任务时,
 - a. 选择相机为"Zenmuse L1",然后点击"Photogrammetry"。
 - b. 完成页面各参数设置、高级设置以及负载设置。推荐使用默认的重叠率参数,关闭畸变校正。
- 3. 点击 🖥 保存建图航拍任务,点击 오 上传航线并执行飞行任务。
- 4. 飞行任务结束后关闭飞行器电源。取出 L1 的 microSD 卡并连至计算机,可在 DCIM 文件夹中检查所录制的点云文件、所拍摄的照片以及其它文件。

航带飞行

- 1. 进入 DJI Pilot App 航线飞行界面 > "创建航线",选择 🖉 创建航带飞行任务。
- 2. 调整地图上所需扫描的区块。

- 3. 编辑 LiDAR Mapping (点云测绘) 或 Photogrammetry (摄影测量)任务的参数:
 - A. 执行点云测绘任务时,
 - a. 选择相机为"Zenmuse L1",然后点击"LiDAR Mapping"。
 - b. 完成页面各参数设置、高级设置、负载设置、航带或航线设置。推荐飞行高度为 50-100 m,飞行速度为 8-12 m/s,外扩距离覆盖需要采集的兴趣区域即可。
 - B. 执行摄影测量任务时,
 - a. 选择相机为"Zenmuse L1",然后点击"Photogrammetry"。
 - b. 完成页面各参数设置、高级设置以及负载设置。推荐使用默认的重叠率参数,关闭畸 变校正。
- 4. 点击 🖬 保存航带飞行任务,点击 오 上传航线并执行飞行任务。
- 5. 飞行任务结束后关闭飞行器电源。取出 L1 的 microSD 卡并连至计算机,可在 DCIM 文件夹 中检查所录制的点云文件、所拍摄的照片以及其它文件。

仿地飞行

用户通过在建图航拍任务中开启仿地飞行功能,导入包含高度信息的 DSM 文件,可以进行精准的仿地飞行。

准备文件

可通过以下两种模式获取测区范围内的 DSM 文件:

- A. 先采集测区的二维数据,通过大疆智图进行二维建模,建模时重建类型选用"果树场景", 生成的 gsddsm.tif 文件即为可进行仿地的高程文件,将其导入遥控器 microSD 卡中。
- B. 在公开的地形数据下载网址中下载包含测区的地形数据,将其导入遥控器 microSD 卡中。

 、 需确保使用的 DSM 文件的坐标系统为地理坐标系,而不是投影坐标系,否则将无法导入识别。同时,导入的地形分辨率不宜太高,建议分辨率低于 10 米。

导入文件

- 1. 在建图航拍任务设置页面中,开启仿地飞行。
- 2. 点击"DSM 文件选择"进入文件选择页面。点击"+"选择遥控器中 microSD 卡文件后, 点击导入,然后等待 App 显示导入成功。
- 3. 成功导入的文件将显示在文件选择列表中。

规划航线

- 1. 开启"仿地飞行",在"DSM 文件选择"页面中,选中所需要的文件。
- 2. 在建图航拍任务设置页面中,设置航线参数:
 - A. 设置仿地飞行高度。
 - B. 设置起飞速度、航线速度、完成动作。
 - C. 高级设置中,设置激光旁向重叠率、主航线角度、边距、拍照模式。
 - D. 负载设置中,设置回波模式、采样频率、扫描模式、真彩上色。

ZENMUSE L1 用户手册

- 3. 点击 🖬 保存任务, 点击 🕑 上传航线并执行飞行任务。
- 4. 飞行任务结束后关闭飞行器电源。取出 L1 的 microSD 卡并连接计算机,可检查点云原始数 据是否完整。

手动飞行

- 操作飞行器飞至适当高度,推荐录制对象与L1负载距离大于5米且小于100米;推荐触发 惯导标定,点击 □^{32株} > ∞,执行并完成惯导标定。为保证飞行安全,请打开避障系统并 确认红色标定区域没有障碍物。
- 将飞行器飞到目标物附近,通过相机画面调节云台到适合的采集角度,点击 _ ▲ 进入点 云界面,点击 ● 开始录制点云数据。

×	
	惯导标定 飞行器将以当前位置为股点,进行飞行距离为 30m(980)的加减建飞行按定急载置导。力保 证飞行安全,前开开着得系统并确认红色标定区 端没有得得所。
	开始执行

- 3. 执行飞行任务录制点云,点击 🖾 可预览已录制模型。
- 4. 返回点云界面,点击 🔵 可完成录制。
- 5. 点云数据录制结束时,建议再进行一次惯导标定。
- 6. 飞行任务结束后关闭飞行器电源。取出 L1 的 microSD 卡并连至计算机,可在 DCIM 文件夹中检查所录制的点云文件、所拍摄的照片以及其它文件。

点云数据存储说明

XC (F:) DCIM D				 SDXC (F) DCIM DJL_202103301523_ 	018		
				5/8	修改日期	天空	大小
称	修改日期	类型	大小	D/I_20210330152356_0001.CLC	2021/3/30 15:24	CLC 文件	1 KB
D# 202102201052 005	2021 (2 (20 10-52	who (all who	10453.)	DJL_20210330152356_0001.CLI	2021/3/30 15:24	CLI文件	1 KB
DJI_202103501055_006	2021/5/50 10:55	又针类		DJI_20210330152356_0001.CMI	2021/3/30 15:24	CMI 文件	1 KB
DJI_202103301105_007	2021/3/30 11:06	文件夹		DJL_20210330152356_0001.IMU	2021/3/30 15:35	IMU 文件	5,622 KB
DJL 202103301501_008	2021/3/30 15:01	文件夹		DJL_20210330152356_0001.LDR	2021/3/30 15:26	LDR 文件	563,200 KB
DII 202102201501 009	2021/2/20 15-01	***		DJL_20210330152356_0001.RT8	2021/3/30 18:11	RTB 文件	2,005 KB
03_202103301301_009	2021/3/30 13.01	XHX		DJI_20210330152356_0001.RTK	2021/3/30 15:35	RTK 这件	2.010 KB
DJI_202103301501_010	2021/3/30 15:01	文件夹		DJI_20210330152356_0001.RTL	2021/3/30 15:35	RTL文件	640 KB
DJI_202103301501_011	2021/3/30 15:01	文件夹		DJL_20210330152356_0001.RTS	2021/3/30 15:35	KIS 324	590 KB
DII 202103301502 012	2021/3/30 15:02	文件本		DIL 20210330132400_0002.043	2021/5/50 15:24	IDEG IEM	7,491 KB
	2021/0/00 15:02	~!!!~		C DII 20210330152405 0004 JPG	2021/3/30 15:24	IPEG (BOR)	7,495 KB
DJI_202103301502_013	2021/3/30 15:02	文件类		DJL 20210330152409.0005.JPG	2021/3/30 15:24	JPEG EER	7.507 KB
DJI_202103301511_014	2021/3/30 15:11	文件夹		E DJL 20210330152412_0006.JPG	2021/3/30 15:24	JPEG 医像	7,499 KB
DJI 202103301512 015	2021/3/30 15:12	文件夹		Sector 10, 20210330152415_0007.JPG	2021/3/30 15:24	JPEG 图像	7,497 KB
DIL 202102201522 016	2021/2/20 15:22	-Pr/0+111		E DJL_20210330152418_0008.JPG	2021/3/30 15:24	JPEG 画像	7,500 KB
DJ_202105501525_010	2021/3/30 13.25	XHX		E DJL_20210330152421_0009.JPG	2021/3/30 15:24	JPEG 图像	7,502 KB
L DJI_202103301523_017	2021/3/30 15:23	文件夹		DJL_20210330152424_0010.JPG	2021/3/30 15:24	JPEG 图像	7,498 KB
L DJI_202103301523_018	2021/3/30 15:23	文件夹		DJL_20210330152427_0011.JPG	2021/3/30 15:24	JPEG 图像	7,510 KB
DIL 202103301535 019	2021/3/30 15:35	7741222		DJL_20210330152430_0012.JPG	2021/3/30 15:24	JPEG 图像	7,495 KB
- UN_EUE105001555_015	2021/3/30 13:33	AITA		DJR_20210330152433_0013.JPG	2021/3/30 15:24	JPEG 图像	7,499 KB
DJL_202103301535_020	2021/3/30 15:35	又件夹		▶ DJI_20210330152436_0014.JPG	2021/3/30 15:24	かたら 価様	7,499 KB

- A. 录制的点云数据将存储于 L1 负载的 microSD 卡中,存储目录为 microSD: DCIM/DJI_ YYYYMMDDHHMM_序号_XXX(自定义)。
- B. 文件夹中应包括后缀名为 CLC、CLI、CMI、IMU、LDR、RTB、RTK、RTL 和 RTS 的文件, 以及飞行过程拍摄的照片。

△ 存储目录中的"XXX(自定义)"不支持使用中文字符。

基站卫星数据获取

使用场景网络信号或遥控器图传信号较差时,可以使用 D-RTK 2 移动站或第三方 RTK 基站的 RTCM 数据辅助 L1 负载进行数据后处理。步骤如下:

- 1. 根据 microSD 卡所存储的点云数据文件目录,确认任务作业的时间段(本地时间)。
- 2. 在 D-RTK 2 移动站或第三方 RTK 基站所存储的文件中,查找相同时间段基站数据,并按以 下方法处理。
 - A. 如果使用 D-RTK 2 移动站,直接将 rtcmraw 目录下,对应时间段的 .DAT 文件拷贝到点 云数据文件目录下。
 - B. 如果使用第三方 RTK 基站,支持.oem/.ubx/.obs/.rtcm 文件,需要将文件名重命名为点 云数据文件目录中的.RTB 文件的名称(命名规则见下表),再将重命名文件拷贝到点 云数据文件目录下。DJI Terra 将根据后缀优先级使用基站数据,优先级顺序为: oem>. ubx>.obs>.rtcm。

协议类型	协议版本	消息类型	命名规则	
OEM	OEM4、OEM6	RANGE	DJI_YYYYMMDDHHMM_XXX.oem	
UBX		RAWX	DJI_YYYYMMDDHHMM_XXX.ubx	
RINEX	v2.1x、v3.0x		DJI_YYYYMMDDHHMM_XXX.obs	
RTCM	v3.0	1003、1004、 1012、1014		
	v3.20	MSM4、MSM5、 MSM6、MSM7		

- ☆:・请留意 D-RTK 2 移动站中所存储的 RTCM 文件,文件名里的时间为 UTC 格式。
 - •如果使用 D-RTK 2 移动站,亦可直接拷贝当天所有基站数据文件,DJI Terra 将会自动 进行合并。
 - •在自行架设第三方基站时,可通过以下步骤设置基站的坐标原点(Renix 格式为例):
 - 1. 将基站架设到一个已知坐标的点上,记录该坐标 ECEF 格式的 XYZ 坐标值(如有需 要请使用第三方软件进行格式转换)。
 - 2. 使用记事本打开 Renix 文件的基站记录文件,即后缀为 .O 的文件,修改 .O 文件的 APPROX POSITION XYZ 坐标为已记录的坐标值。
 - •请阅读 D-RTK 2 移动站用户手册了解移动站应用相关内容。

内业数据处理

使用 DJI Terra 可对收集的点云信息进行建图,请先阅读 DJI Terra 用户手册,了解 DJI Terra 具体使用方法。

下载 DJI Terra

使用本产品过程中,需要下载安装 DJI Terra。请先阅读 DJI Terra 用户手册,了解 DJI Terra 应 用配置和使用方法。

可在 https://www.dji.com/dji-terra/downloads 页面下载安装。

建图步骤

按照以下步骤进行建图。

- 1. 运行 DJI Terra > "新建任务" > "激光雷达点云处理",创建任务名称并保存。
- 2. 在任务编辑界面,点击 💼,选择以数据采集时间命名的文件夹,注意该文件夹中应包括后缀名为 CLC、CLI、CMI、IMU、LDR、RTB、RTK、RTL 和 RTS 的文件。
- 3. 设置点云密度和输出坐标系。
- 4. 点击开始处理,等待处理完成。
- 5. 使用快捷键 Ctrl+Alt+F 打开当前任务的文件夹,确认结果文件。
- 6. 阅读 DJI Terra 用户手册,了解更多处理技巧,如:点云精度优化。

激光雷达点云说明

- L1 负载可支持非重复扫描与重复扫描两种扫描模式:
- A. 非重复扫描为 Livox 特有的扫描方式,提供完整的近圆形 FOV,扫描立体效果更好。

B. 重复扫描为扁型 FOV,其扫描类似于传统线扫激光雷达,能获取更均匀、精度更高的扫描结果。

非重复扫描

点云密度图

非重复扫描点云图案的 FOV 为水平 70.4°,竖直 77.2°。不同积分时间内(分别为 0.1s、0.2s、0.5 和 1s)激光雷达的点云图如图所示。

- A. 0.1s 的扫描图案在 FOV 中心半径为 10° 的圆形内,点云密度相当于常见 32 线机械旋转式 激光雷达。
- B. 0.2s 的扫描图案在 FOV 中心半径为 10° 的圆形内,点云密度相当于常见 64 线机械旋转式 激光雷达,其它区域相当于常见 32 线机械旋转式激光雷达。
- C. 随着积分时间增加,整个 FOV 内的点云密度及点云覆盖率逐渐提升,可探测到视场中更多 细节。

视场覆盖率

L1 激光雷达的视场覆盖率,和当前市场上常见的几款多线机械旋转式激光探测测距仪的对比如 图所示。

- A. 当积分时间为 0.3s 时,视场覆盖率 约为 70%,略优于常见 64 线机械 旋转式激光雷达。
- B. 当积分时间达到 0.8s 左右时,视场 覆盖率将会接近 100%,即视场中 几乎所有区域都会覆盖到。

重复扫描

L1 激光雷达重复扫描图案的重复周期约 0.1s,重复扫描图案水平 FOV 为 70.4° ,竖直 FOV 为 4.5° ,其竖直方向角度分辨率略优于传统 32 线激光雷达。

- ▲ •近处盲区:当被测物距离 L1 激光雷达小于 1 m 时,L1 激光雷达无法对其进行测量。 当被测物体距离处于 1-3 m 的范围时,L1 激光雷达的点云图像可能会产生不同程度的 畸变。
 - •测试条件为环境温度 25℃,目标物体距离 20 m,反射率为 80% 时测得 L1 激光雷达 的距离精度为 2 cm。具体指标与测试条件相关,以实测结果为准。

设备维护保养

日志导出

一旦 L1 负载在使用过程中出现异常,进入 DJI Polit App 手动飞行界面 > ••• > Zenmuse L1 日 志导出,点击"导出"拉取日志到 L1 负载的 microSD 卡中,方便后续分析处理。

固件升级

使用 DJI Pilot App 升级

- 确保 L1 负载已正确安装在飞行器上,飞行器与遥控器及其它配合使用的 DJI 设备连接正常, 所有设备均已开启。
- 2. 在 DJI Pilot App 中,进入健康管理系统 > 固件升级 > Zenmuse L1,根据提示进行升级。 支持一键升级。

使用 microSD 升级

- 升级前请务必确保 L1 负载已安装于飞行器上且飞行器电源已关闭,microSD 卡有足够的存储空间且飞行器智能飞行电池电量充足。
- 2. 浏览 DJI 官网并进入 Zenmuse L1 下载页面。
- 3. 选择最新的固件升级包进行下载。
- 4. 将下载的固件升级包文件拷贝至 microSD 卡的根目录下。
- 5. 将 microSD 卡插入 L1 负载的 microSD 卡槽。
- 6. 开启飞行器电源,此时云台相机将启动自检,自动开始升级固件,并发出状态提示音。
- 7. 升级完成后,请重启设备。

固件升级提示音

状态提示音	描述
嘀——,嘀——,…	检测到升级文件,准备升级
嘀嘀嘀嘀,嘀嘀嘀嘀,…	固件升级中,请勿中断
嘀 - 嘀嘀,嘀 - 嘀嘀,…	固件升级成功
嘀	固件升级失败,请尝试重新升级。若重复多次仍失败,请联系 DJI 技术支持获取帮助。

▲ •请确保 microSD 卡中只存放单版本升级文件,否则将出现升级异常。

•固件升级过程中,状态提示音可能会短暂消失,请耐心等待,确保状态提示音为"嘀-嘀嘀"即代表固件升级完成。升级完成前,请勿关闭飞行器电源或取下 L1 负载,以免 对云台相机造成损害。

用户标定

当 L1 负载出现规律上色错误时,需要对 L1 负载进行用户标定。L1 固件需为 v03.00.01.00 或 以上版本。

重新标定 L1 负载内外参数

1. 采集标定数据

确保测区内有建筑物的立面。使用建图航拍规划一条5分钟左右的航线,需要开启惯导标定、 高程优化、模型上色、单回波和重复扫描,并设置旁向重叠率为50%。规划完成后执行航 线任务,采集一组L1负载数据。

2. 使用 DJI Terra 生成标定文件

使用大疆智图 DJI Terra (v3.1.0 或以上版本),新建激光雷达点云处理任务,导入步骤1 所采集的标定数据,并选择使用场景为"禅思 L1 自标定",处理完成后,点击"导出标定 文件"。生成标定文件为工程文件夹 lidars/terra_L1_cali 下的.tar 文件。 建议重建后先查看点云是否有分层、上色是否有重影,如果没有分层和重影问题,则进入步 骤3,否则需要重复步骤1和2重新获取标定文件。

3. 标定 L1 负载

将标定文件拷贝到 L1 负载的 microSD 卡根目录,插入 microSD 卡至需要标定的 L1 负载, 将 L1 负载安装至 M300 RTK 并开启飞行器电源,等待 5 分钟左右可完成标定。

4. 检查

标定完成后,取出 L1 负载的 microSD 卡并连至计算机,读取 microSD 卡中的 .txt 格式的 log 文件,如果显示 all succeed,则表明标定成功。也可重新录制一组点云数据,查看点云 源文件中的 CLI 文件的时间参数是否更新。

恢复 L1 负载内外参数的出厂设置

一旦用户标定效果不佳,也可通过以下操作恢复 L1 负载内外参数的出厂设置。

 新建一个 txt 文本文档,命名为 reset_cali_user,然后打开文档,写入需要重置参数的 L1 负载的 SN 序列号,格式为 "SN number: XXXXXXXXXXXXXX" (SN 序列号可在任务文件 夹的 .CLI 文件或 App 的设备版本信息中查看)。

/// reset_cali_user - 记事本	(<u>223</u>)	
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)		
SN number: 3FCDJ5R004P198		

2. 拷贝此 txt 文本文档至 microSD 卡,插入 microSD 卡至需要标定的 L1 负载,将 L1 负载安 装至 M300 RTK 并开启飞行器电源,等待 5 分钟左右可完成标定。

3. 录制一组点云数据,取出L1负载的 microSD 卡并连至计算机,读取 microSD 卡中的.txt 格式的 log 文件,如果显示 all succeed,则表明恢复成功。也可查看点云源文件中的 CLI 文件的时间参数是否已恢复至出厂时间。

存储、运输和保养

存储

L1 激光雷达存储温度为 -40℃ ~85℃,请将其存储于干燥无尘的环境中,并注意:

- 1. 严禁将产品暴露在有毒有害及腐蚀性的环境中。
- 2. 保存时轻拿轻放,切勿摔落产品。

运输

- 运输前,请将产品装入包装箱。包装箱中务必放入缓冲泡棉,并保证包装箱内干燥清洁,无水汽。
- 2. 运输过程中请务必小心轻放,切勿磕碰、撞击或摔落产品。

保养

- 1. L1 激光雷达在设计中充分考虑了可靠性和稳定性的要求,具有先进的光学、机械以及电气性能。正常使用下故障概率较小,仅需对激光雷达窗口进行清洁。
- 若激光雷达窗口无污点或灰尘等杂质,无需对其清洁。由于污点或灰尘等杂质会影响激光雷达的性能,因此,若发现窗口上有污点等杂质,请按照以下步骤进行清洁:

A. 使用压缩空气清洁器

使用镜头清洁布擦拭窗口前,请首先使用压缩空气清洁器对准窗口需清洁的部分进行点喷。 注意: 当窗口上有颗粒状的灰尘等杂质时,直接擦拭可能会导致窗口玻璃被刮花,影响激光 雷达的探测性能。

B. 擦拭污点

使用湿润的镜头清洁布擦拭窗口,使用干的镜头清洁布可能会损坏窗口。如果窗口仍然存在 污点,请使用温和的肥皂溶液清洗窗口。然后重复步骤 B 去除肥皂残留物。

规格参数

总体	
产品名称	ZENMUSE L1
尺寸	152 × 110 × 169 mm
重量	930 ± 10 g
系统功耗	30 W(典型值),60 W(最大值)
防护等级	IP54
支持机型	Matrice 300 RTK
工作温度	-20℃至 50℃(测绘相机工作温度为 0℃至 50℃)
存储温度	-20℃至 60℃
系统性能	
量程	450 m @ 80%, 0 klx 190 m @ 10%, 100 klx
点云数据率	单回波:最大 240 000 点 / 秒 多回波:最大 480 000 点 / 秒
系统精度 (RMS 1σ)*	平面精度: 10 cm @ 50 m 高程精度: 5 cm @ 50 m
实时点云上色模式	反射率,高度,距离,真彩
激光雷达	
激光波长	905 nm
光束发散角度	0.03°(水平)× 0.28°(竖直)
测距精度 (RMS 1 σ)**	3 cm @ 100 m
最多支持回波数量	3
扫描模式	非重复扫描,重复扫描
FOV	非重复扫描: 70.4°(水平)× 77.2°(竖直) 重复扫描: 70.4°(水平)× 4.5°(竖直)
人眼安全等级	Class 1 (IEC 60825-1:2014)
惯导系统	
IMU 更新频率	200 Hz
加速度计量程	±8 g
角速度计量程	±2000 dps
航向精度 (RMS 1 σ)*	实时: 0.3°,后处理: 0.15°
俯仰 / 横滚精度 (RMS 1 σ)*	实时: 0.05°,后处理: 0.025°
辅助定位相机	
分辨率	1280×960
FOV	95°
测绘相机	
传感器尺寸	1 英寸
有效像素	2000万
照片尺寸	5472×3078 (16:9); 4864×3648 (4:3); 5472×3648 (3:2)

焦距	8.8 mm / 24 mm (等效)
快门速度	机械快门:1/2000 - 8 s 电子快门:1/8000 - 8 s
ISO	视频:100 - 3200(自动),100 - 6400(手动) 照片:100 - 3200(自动),100 - 12800(手动)
光圈	f/2.8 - f/11
支持文件系统	FAT (≤32 GB) ; exFAT (>32 GB)
图片格式	JPEG
视频格式	MOV, MP4
录像分辨率	H.264, 4K: 3840×2160 30p
云台	
稳定系统	3轴(俯仰,横滚,平移)
角度抖动量	±0.01°
安装方式	DJI SKYPORT 快拆
可控转动范围	俯仰: -120°至 +30°,平移: ±320°
工作模式	跟随 / 自由 / 回中
数据存储	
原始数据存储	照片 /IMU/ 点云数据 /GNSS 数据 / 标定文件
支持的存储卡类型	microSD 卡;最大支持 256GB 容量,顺序写入速度 ≥50MB/s,传输速 度达到 UHS-I Speed Grade 3,请使用指定推荐用卡。
推荐存储卡类型 ***	Sandisk Extreme 128GB UHS-I Speed Grade 3 SanDisk Extreme 64GB UHS-I Speed Grade 3 SanDisk Extreme 32GB UHS-I Speed Grade 3 SanDisk Extreme 16GB UHS-I Speed Grade 3 Lexar 1066x 128GB U3 Samsung EVO Plus 128GB
数据存储	
支持软件	大疆智图
数据格式	大彊智图支持标准格式点云模型导出: 点云格式:PNTS/LAS/PLY/PCD/S3MB格式

* 精度由大疆实验室在以下条件测得:L1负载上电预热5分钟,使用 DJI Pilot 航线任务为建图航拍(开启惯导标定),RTK 状态为 FIX,任务相对高度为 50 m、飞行速度为 10 m/s、云台俯仰为 -90°、航线中每个直线段不超过 1000 m,使用 DJI Terra 进行后处理。

** 在环境温度为 25°C、目标物体反射率为 80% 并置于 100 米外的条件下测得。具体指标测试条件相关,以实测结果为准。

***后续可能更新,请访问 DJI 官网进行查询。

本手册如有更新,恕不另行通知。

了解产品详细信息,请访问以下网址下载最新版本 https://www.dji.com/zenmuse-l1

如果您对说明书有任何疑问或建议,请通过以下电子邮箱联系我们: DocSupport@dji.com。

ZENMUSE 是大疆创新的商标。 Copyright © 2021 大疆创新 版权所有